
Berkeley Math Circle: Monthly Contest 6 Solutions

1. Is the number 2324 − 2423 positive or negative?

SOLUTION. By the Binomial Theorem, we have that(
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where the last step is due to the fact that
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3 , from which it follows that
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implying that 2324 − 2423 is positive .

2. V. Enhance, the CEO of Evan Corporation LLC, has a secret favorite number c,
not necessarily a whole number. He also has a special number machine with a red
button: when any number x is inputted into the machine and the button is pressed,
it displays the value of

x

2
+

c

2x
on a screen.

Aerith begins by inputting the value x = 1 into the machine; every minute, she
pushes the red button and reenters the value displayed on the screen into the ma-
chine. Interestingly, Aerith notices that output of the machine eventually gets closer
and closer to exactly 206. Determine the value of c.

SOLUTION. We solve this problem for 206 replaced by any general n.

Define the function

f(x) =
x

2
+

c

2x
=

x2 + c

2x
,

and let ai be the number displayed on the machine immediately after Aerith presses
the red button for the ith time, so that a0 = 1 and ai+1 = f(ai) for each i.

For positive x, we have

f(x)− x =
x2 + c

2x
− x =

(x2 + c)− 2x2

2x
=

c− x2

2x
,

implying that x < f(x) iff x <
√
c, x > f(x) iff x >

√
c, and x = f(x) iff x =

√
c.

Since the ai are all positive, they must all move in the direction of
√
c, so convergence

yields n =
√
c. In particular, for n = 206, it follows that c = n2 = 2062 = 42436 .
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3. A finite collection of circles, of any radius, in the plane are shaded blue. Your task
is to shade some of the circles red, while ensuring that no red circles overlap. Prove
that you can always ensure that the area of the red region is at least 10% of the area
of the blue region.

SOLUTION. Let S be our collection of blue circles, and let n = |S| be the number
of circles that S contains. We prove the desired statement by induction on n.

If n = 1, the conclusion is obvious. For larger n, consider the circle ω of maximal
radius r and center O, and remove all circles intersecting it. If any circle ω′ removed
has radius s and center O′, then s ≤ r and t ≤ s + r ≤ 2r, where t = OO′. In
particular, the farthest point on ω′ from O is a distance t+ s ≤ 3r away from O. As
a result, the area of all circles removed is at most the area of the circle with radius
3r concentric with ω, which is equivalently 9 times the area of ω.

Considering the subcollection T of circles not intersecting ω, our inductive hypothesis
implies the existence of a subcollection R of T such that no two circles in R overlap,
and the area enclosed by R is at least 1

10 of the area enclosed by T . The argument
in the previous paragraph additionally shows that ω has area greater than or equal
to 1

9 of the area of S\T . Coloring all circles in R ∪ {ω} red then finishes.

4. Aerith and Bob play the following game: a positive integer n is chosen, after which
Aerith and Bob alternate choosing an integer between 1 and n, inclusive, that has
not been chosen. They keep a running product of all numbers that have already
been chosen, and the first player to make that running product a multiple of n loses.
Find all initial choices of n for which Aerith wins.

SOLUTION. Aerith wins if and only if n is even or has a perfect square greater
than 1 as a divisor.

If n is even, Aerith first picks n
2 , so that the loser is the player forced to pick an even

number. This yields two cases:

a) If n is a multiple of 4, there are an even number of odd numbers in total, with
Aerith’s first number n

2 being even. Hence there are an even number of odd
numbers available after Aerith’s turn. In particular, after each player, starting
with Bob, alternates picking odd numbers, Bob will be the first one to be forced
to choose an even number and thus lose.

b) Otherwise, there are an odd number of odd numbers between 1 and n inclusive,
with Aerith’s first number n

2 being odd, again yielding an even number of
available odd numbers after Aerith’s first turn, so Aerith wins once again.

If n is odd and is not squarefree, there must exist some prime p such that p2 | n.
In this case, Aerith starts by picking n

p , so the loser is the player forced to pick a
multiple of p.

Since p | n, there are n′ = (p−1)n
p numbers between 1 and n, inclusive, that are

not divisible by p, with n′ even by parity. Noting that Aerith’s first number n
p

is a multiple of p, this implies that there are still n′ numbers indivisible by p after
Aerith’s turn. Thus, after each player, starting with Bob, alternates picking numbers
not divisible by p, Bob will be the first one forced to pick a number divisible by p,
so he loses.
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If n is odd and squarefree, Bob’s winning strategy is to pick n− k after Aerith picks
any integer k. Note that this is well-defined: if Aerith picks n, she immediately loses.
If instead she picks some k < n, it is easy to see that n− k must always be available
and distinct from k by parity of n.

We must still show that Bob’s strategy will never cause him to lose. In our case,
there exist distinct odd primes p1, p2, . . . , pk such that n =

∏k
i=1 pi, so the game ends

if and only if at least one number has been selected that is divisible by each pi. Since
gcd(n, k) = gcd(n, n−k), the only members of {p1, p2, . . . , pk} that divide n−k also
divide k. Hence, if any of Aerith’s moves doesn’t cause her to lose, then Bob’s move
immediately after will not cause him to lose either. Hence Bob can never lose before
Aerith. The game must end at some point, so Aerith must lose and Bob will win.

5. Find the number of polynomials P (x) of degree 3 with nonnegative integer coeffi-
cients strictly less than 100 such that the last two digits of P (x) are either 00 or 76
for all integer values of x.

SOLUTION. Call a polynomial P cool if it satisfies our desired property above.
Additionally, call a cubic Q 4-cool if Q(x) is always divisible by 4 for any integer
x, and similarly call R 25-cool if Q(x) is equivalent to either 0 or 1 modulo 25
for the same x. Finally, for some n, say that a polynomial S(x) is n-maximal if
each of its coefficients are integers between 0 and n − 1, inclusive. By the Chinese
Remainder Theorem, note that P is cool iff it is simultaneously 100-maximal, 4-cool,
and 25-cool.

For each pair of ordered quadruplets of integers (k1, k2, k3, k4) and (k5, k6, k7, k8),
there is exactly one possible value of (a, b, c, d) such that {a, b, c, d} ⊆ {1, 2, . . . , 100},
(a, b, c, d) ≡ (k1, k2, k3, k4) (mod 4), and (a, b, c, d) ≡ (k5, k6, k7, k8) (mod 25). Thus
the number of cool polynomials is equal the number of 4-maximal, 4-cool polynomials
multiplied by the number of 25-maximal, 25-cool polynomials.

First, let us consider a 4-maximal and 4-cool polynomial P (x) = ax3+ bx2+ cx+ d.
Plugging in x ∈ {0, 1, 2, 3} yield that d = 0 and (a, b, c) must be one of (0, 0, 0),
(2, 2, 0), (0, 2, 2), and (2, 0, 2). This gives a total of 4 polynomials that are 4-maximal
and 4-cool.

Now let P (x) = ax3 + bx2 + cx + d be 25-maximal and 25-cool. Plugging in x = 0
yields d ∈ {0, 1}, and plugging in x = 5 grants that {5c, 5c+1} ∩ {0, 1} (mod 25) is
nonempty, which forces the existence of c′ with c ≡ 5c′ (mod 25). In particular, it
follows that P (x) ∈ {ax3 + bx2, ax3 + bx2 + 1} (mod 5).

We have two cases:

a) If d = 0, then P (x) ≡ ax3 + bx2 (mod 5) is either 0 or 1 modulo 5. Plugging
in x ∈ {1, 2, 3, 4}, we can quickly conclude that a ≡ b ≡ 0 (mod 5).

b) Otherwise, if d = 1, then P (x) ≡ ax3+ bx2+1 (mod 5) is either 0 or 1 modulo
5. The same method as above also yields that a ≡ b ≡ 0 (mod 5).

Hence a ≡ b ≡ 0 (mod 5) either way, so we write a ≡ 5a′ and b ≡ 5b′ (mod 25)
for integers a′ and b′. Since c ≡ 5c′ (mod 25) and d ∈ {0, 1}, it therefore follows
that {5(a′x3 + b′x2 + c′x3), 5(a′x3 + b′x2 + c′x3) + 1} ∩ {0, 1} (mod 25) is nonempty
is nonempty, forcing us to have 5a′x3 + 5b′x2 + 5c′x ≡ 0 (mod 25) for all x. Thus

3



a′x3 + b′x2 + c′x ≡ 0 (mod 5). Plugging in x ∈ {1, 2, 3, 4} again quickly yields that
a′ ≡ b′ ≡ c′ ≡ 0 (mod 5), so a = b = c = 0 by 25-maximality. This yields two
25-maximal and 25-cool polynomials, namely P = 0 and P = 1.

There are 4 polynomials that are 4-maximal and 4-cool and 2 polynomials that are
25-maximal and 25-cool, yielding 4 · 2 = 8 cool polynomials in total.

6. A line is drawn in the plane. You have a straightedge, but no compass. Prove that
it is impossible to construct a parallel line.

SOLUTION. As projective transformations preserve point-line incidences, taking
such a transformation that preserves the original line but not its point at infinity
would make the parallel line not parallel, a contradiction.

7. Let f and g be polynomials in x, y with integer coefficients.

(a) Prove that if some integer s is expressible as a product of coefficients of f and g,
there exists a positive integer n such that sn is expressible as an integer linear
combination of the coefficients of fg.

(b) Solve part (a) where f and g are multivariable polynomials instead.

Note: an integer linear combination of a set of integers {a1, . . . , an} is a number of
the form a1b1 + a2b2 + · · ·+ anbn where {b1, . . . , bn} is an arbitrary set of integers.

SOLUTION.

a) Denote f and g by

f(x) = f0 + f1x+ f2x
2 + · · ·+ fnx

n

and
g(x) = g0 + g1x+ g2x

2 + · · ·+ gnx
n.

Proceed by ascending induction on k = i+ j to show that s = figj satisfies the
desired criteria. For k = 0, the result is obvious because the only possibility is
f0g0, which is a coefficient of fg.

Now assume k ≥ 1 to prove the statement for figj . Taking convolutions yield
that the kth coefficient of h = fg is

hk =

k∑
l=0

flgk−l,

so that

f2
i g

2
j = hkfigj −

i−1∑
l=0

flgk−lfigj −
k∑

l=i+1

flgk−lfigj .

Each term in the first summation is a multiple of flgj . Since l+j = l−i+k < k
due to bounding, our inductive hypothesis implies that each of the terms in this
summation can be raised to some power sl to obtain a linear combination of
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the coefficients of fg. Analogously, each term in the second summation is a
multiple of figk−l, with i + k − l < k again by bounding, so our induction
hypothesis tells us that each of the terms in this sum can be raised to some
power sl to obtain a linear combination of the coefficients of fg.

For the sake of notational brevity, denote tl = −flgk−lfigj for all l ̸= i, and let
ti = hkfigj so that si = 1. Our equation is now

(figj)
2 =

k∑
l=0

tl.

If s =
∑k

l=0 si, then raising the above equation to the power of s yields a
summation, with each term in the multinomial expansion of the right hand
side being a multiple of tsll for some t. Hence, the right hand side is a linear
combination of the coefficients of h, completing our induction.

b) A practically identical argument follows for the n ≥ 1 case in general. Here,
we proceed by induction on n, with the n = 1 case following from the previous
part.

For the inductive step, we suppose that n ≥ 2. In particular, let

f = f0 + · · ·+ fm

and
g = g0 + · · ·+ gm

where the fi and gi are both homogeneous polynomials in the n variables,
with a product of coefficients of f and g corresponding to a product of co-
efficients of fi and gj for some i and j. The crucial observation is that the
coefficients of fi and gj are exactly the coefficients of fi(x1, x2, . . . , xn−1, 1) and
gj(x1, x2, . . . , xn−1, 1), which are polynomials only in n− 1 variables.

The inductive hypothesis implies that a product of coefficients of the polynomi-
als f ′

i = fi(x1, x2, . . . , xn−1, 1) and g′j = gj(x1, x2, . . . , xn−1, 1) can be raised to
some power to get a linear combination of coefficients of f ′

ig
′
j , which are exactly

just the coefficients of figj . We now notice that it suffices to show that figj can
itself be raised to a power m to get a linear combination of the homogeneous
components of fg, as any coefficient c corresponding to xa11 xa22 · · ·xann will show
itself as cmxma1

1 xma2
2 · · ·xman

n in the expansion of (figj)
m. Then the argument

is entirely analogous to that of the n = 1, where we use induction on k = i+ j
to show our desired statement for figj , which finishes.
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